Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Concentrations of total dissolved inorganic carbon (DIC) in freshwater ecosystems are controlled by terrestrial inputs and a myriad of in situ processes, such as aquatic metabolism. Dissolved CO2is one of the components of DIC, and its dynamics are also regulated by chemical equilibrium with the DIC pool, so‐called carbonate buffering. Although its importance is generally recognized, carbonate buffering is still not consistently accounted for in freshwater studies. Here, we review key concepts in freshwater carbonate buffering, perform simulation experiments, and provide a case study of an alkaline river to illustrate calculations of DIC from CO2. These analyses demonstrate that carbonate buffering can alter common interpretations of CO2data, including carbon–oxygen coupling through production and respiration. As direct measurements of dissolved CO2are increasingly common, accounting for CO2equilibria with DIC is critical to understanding its role in carbon cycling within most freshwater systems.more » « lessFree, publicly-accessible full text available July 16, 2026
-
The Upper Clark Fork River (UCFR) Long Term Research in Environmental Biology (LTREB) umbrella monitoring project generating these data is conducted separately and complementarily to the 200-million-dollar (USD) superfund project for ecological restoration of the UCFR, associated tributaries, and head water streams including Silver Bow and Warm Springs Creeks. Restoration along the UCFR in western Montana includes removal of metal-laden floodplain soils, lowering of the floodplain to its original elevation, and re-vegetation of over 70 km of the river’s floodplain closest to contaminant sources. The UCFR LTREB project includes bi-weekly water quality monitoring across the first 200 km of the river and its major tributaries along a gradient of heavy metal contamination associated with historic mining. Monitoring includes inorganic phosphorus and nitrogen concentrations, biotic standing stocks, and dissolved and whole-water heavy metal concentrations. The monitoring program began in 2017 with funding extended through 2028. The original analytical intent for these data was to assess the response of river dissolved organic carbon to the floodplain restoration. Data are Aurora Total Organic Carbon combustion analyses of the concentration of organic carbon dissolved in filtered samples of well-mixed river thalweg water. Data are from the 2021 water year (1 Oct 2020 to 30 Sep 2021) from samples collected on the Upper Clark Fork River (USGS HUC 17010201) at project sites distributed along the river from the vicinity of Anaconda to Missoula, Montana, USA.more » « less
-
The Upper Clark Fork River (UCFR) Long Term Research in Environmental Biology (LTREB) umbrella monitoring project generating these data is conducted separately and complementarily to the 200-million-dollar (USD) superfund project for ecological restoration of the UCFR, associated tributaries, and head water streams including Silver Bow and Warm Springs Creeks. Restoration along the UCFR in western Montana includes removal of metal-laden floodplain soils, lowering of the floodplain to its original elevation, and re-vegetation of over 70 km of the river’s floodplain closest to contaminant sources. The UCFR LTREB project includes bi-weekly water quality monitoring across the first 200 km of the river and its major tributaries along a gradient of heavy metal contamination associated with historic mining. Monitoring includes inorganic phosphorus and nitrogen concentrations, biotic standing stocks, and dissolved and whole-water heavy metal concentrations. The monitoring program began in 2017 with funding extended through 2028. The original analytical intent for these data was to assess the response of river dissolved organic carbon to the floodplain restoration. Data are total organic carbon combustion analyses (Shimadzu Scientific Instruments) of the concentration of organic carbon dissolved in filtered samples of well-mixed river thalweg water. Data are from the 2024 water year (1 Oct 2023 to 30 Sep 2024) from samples collected on the Upper Clark Fork River (USGS HUC 17010201) at project sites distributed along the river from the vicinity of Anaconda to Missoula, Montana, USA.more » « less
-
The Upper Clark Fork River (UCFR) Long Term Research in Environmental Biology (LTREB) umbrella monitoring project generating these data is conducted separately and complementarily to the 200-million-dollar (USD) superfund project for ecological restoration of the UCFR, associated tributaries, and head water streams including Silver Bow and Warm Springs Creeks. Restoration along the UCFR in western Montana includes removal of metal-laden floodplain soils, lowering of the floodplain to its original elevation, and re-vegetation of over 70 km of the river’s floodplain closest to contaminant sources. The UCFR LTREB project includes bi-weekly water quality monitoring across the first 200 km of the river and its major tributaries along a gradient of heavy metal contamination associated with historic mining. Monitoring includes inorganic phosphorus and nitrogen concentrations, biotic standing stocks, and dissolved and whole-water heavy metal concentrations. The monitoring program began in 2017 with funding extended through 2028. The original analytical intent for these data was to assess the response of river dissolved organic carbon to the floodplain restoration. Data are primarily Aurora Total Organic Carbon combustion analyses of the concentration of organic carbon dissolved in filtered samples of well-mixed river thalweg water. A few samples from the final campaign in the dataset were analyzed with a Shimadzu instrument using a similar method. Data are from the 2022 water year (1 Oct 2021 to 30 Sep 2022) from samples collected on the Upper Clark Fork River (USGS HUC 17010201) at project sites distributed along the river from the vicinity of Anaconda to Missoula, Montana, USA.more » « less
-
The Upper Clark Fork River (UCFR) Long Term Research in Environmental Biology (LTREB) umbrella monitoring project generating these data is conducted separately and complementarily to the 200-million-dollar (USD) superfund project for ecological restoration of the UCFR, associated tributaries, and head water streams including Silver Bow and Warm Springs Creeks. Restoration along the UCFR in western Montana includes removal of metal-laden floodplain soils, lowering of the floodplain to its original elevation, and re-vegetation of over 70 km of the river’s floodplain closest to contaminant sources. The UCFR LTREB project includes bi-weekly water quality monitoring across the first 200 km of the river and its major tributaries along a gradient of heavy metal contamination associated with historic mining. Monitoring includes inorganic phosphorus and nitrogen concentrations, biotic standing stocks, and dissolved and whole-water heavy metal concentrations. The monitoring program began in 2017 with funding extended through 2028. The original analytical intent for these data was to assess the response of river dissolved organic carbon to the floodplain restoration. Data are total organic carbon combustion analyses (Shimadzu Scientific Instruments) of the concentration of organic carbon dissolved in filtered samples of well-mixed river thalweg water. Data are from the 2023 water year (1 Oct 2022 to 30 Sep 2023) from samples collected on the Upper Clark Fork River (USGS HUC 17010201) at project sites distributed along the river from the vicinity of Anaconda to Missoula, Montana, USA.more » « less
-
Abstract Rivers efficiently collect, process, and transport terrestrial‐derived carbon. River ecosystem metabolism is the primary mechanism for processing carbon. Diel cycles of dissolved oxygen (DO) have been used for decades to infer river ecosystem metabolic rates, which are routinely used to predict metabolism of carbon dioxide (CO2) with uncertainties of the assumed stoichiometry ranging by a factor of 4. Dissolved inorganic carbon (DIC) has been less used to directly infer metabolism because it is more difficult to quantify, involves the complexity of inorganic carbon speciation, and as shown in this study, likely requires a two‐station approach. Here, we developed DIC metabolism models using single‐ and two‐station approaches. We compared metabolism estimates based on simultaneous DO and DIC monitoring in the Upper Clark Fork River (USA), which also allowed us to estimate ecosystem‐level photosynthetic and respiratory quotients (PQEand RQE). We observed that metabolism estimates from DIC varied more between single‐ and two‐station approaches than estimates from DO. Due to carbonate buffering, CO2is slower to equilibrate with the atmosphere compared to DO, likely incorporating a longer distance of upstream heterogeneity. Reach‐averaged PQEranged from 1.5 to 2.0, while RQEranged from 0.8 to 1.5. Gross primary production from DO was larger than that from DIC, as was net ecosystem production by . The river was autotrophic based on DO but heterotrophic based on DIC, complicating our understanding of how metabolism regulated CO2production. We suggest future studies simultaneously model metabolism from DO and DIC to understand carbon processing in rivers.more » « less
-
This package provides necessary supporting data and models for the manuscript titled "Divergent metabolism estimates from dissolved oxygen and inorganic carbon: implications for river carbon cycling". The entire dataset consists of sensor data collected at three reaches and metabolism estimates from different models. The sensor data include partial pressure of carbon dioxide in water, dissolved oxygen and temperature. At each reach, we established a two station approach, meaning at least one pair of sensor suits were distributed upstream and downstream. Results for metabolism estimates differ by solutes (i.e., oxygen or carbon based) and modelling approaches (i.e., single station or two station approach). In addition to data products, we also provide R packages for metabolism models.more » « less
-
The goal of the proposed study is to establish an Arctic Observing Network (AON) for sea surface partial pressure of carbon dioxide (pCO2) and pH in the perennially ice-covered portion of the Arctic Ocean. The carbon cycle is of particular concern in the Arctic because it is unknown how carbon sources and sinks will change in response to warming and the reduction of summer sea ice cover, and whether these changes will lead to increased greenhouse gas accumulation in the atmosphere. Furthermore, the penetration of anthropogenic caron dioxide (CO2) into the Arctic Ocean is leading to acidification with potentially serious consequences for organisms. Little is known about pCO2 and the inorganic carbon cycle in the central Arctic Ocean because most measurement programs to date have focused on the Arctic shelves during the accessible summer period. The investigators propose to use an existing component of the Arctic Observing Network, the Ice-Tethered Profilers (ITP), as platforms for deployment of in situ pCO2 and pH sensors. ITPs are automated profiling systems distributed throughout the perennial Arctic ice pack that telemeter data back to shore: 44 ITPs have been deployed since 2004 and the project is currently slated to continue through 2013. In the proposed work, a total of 6 ITPs will be equipped with CO2 sensors and four of these will also have pH sensors. The sensors will be fixed on the ITP cable ~2-4 meters below the ice. Each unit will include additional sensors for dissolved O2, salinity, and photosynthetically available radiation (and in some cases chlorophyll-a fluorescence) and will be capable of making 12 measurements per day for at least one year. These data, available in near real-time on the ITP web site (www.whoi.edu/itp/), will lead to a better understanding of the Arctic Ocean's role in regulating greenhouse gases and how the ecology of the Arctic will change with warming and acidification. The investigators will also engage in outreach programs including public presentations, podcasts, and school visits. A portion of the budget is also dedicated to the development of a climate-change/ocean acidification exhibit to be displayed in the University of Montana's science museum. The exhibit will reside at the museum for three months, then visit over 15 rural and tribal communities annually over a three year period. Undergraduate students will be recruited to assist with the sensor testing and data analysis, gaining a higher level of technical knowledge than possible through a traditional degree program. These data were collected using in situ sensors for the partial pressure of CO2 (pCO2), pH, dissolved oxygen (DO), photosynthetically available radiation (PAR), temperature, salinity and depth. Sensors were deployed at ~6 meter depth on ice-tethered profilers, in collaboration with Woods Hole Oceanographic Institution (Rick Krishfield and John Toole). Data are available at the website http://www.whoi.edu/page.do?pid=20781.more » « less
-
These data were collected on the CCGS (Canadian Coast Guard) Louis St. Laurent during BGOS (Beaufort Gyre Observing System) research cruises in 2012-2014 and 2016-2021 in the Beaufort Sea area. They are underway pCO2 (Partial pressure of carbon dioxide) data collected using an equilibrator-infrared method (SUPER CO2 system from Sunburst Sensors). Ancillary data for calculation of air-sea CO fluxes include temperature, salinity, atmospheric CO2, wind speed, and gas transfer velocity (calculated from Wanninkhof et al. (2009). Fluxes are not corrected for fractional ice-coverage. The specific goal of the study is to continue to operate an Arctic Observing Network (AON) for the measurement of the partial pressure of CO2 (pCO2), pH, and dissolved O2 (DO) focused on the surface waters of the Arctic Ocean (specifically, the Canada Basin). These data were collected on the CCGS (Canadian Coast Guard) Louis St. Laurent during a BGOS (Beaufort Gyre Observing System) research cruise in the Beaufort Sea area. It is underway pCO2 (partial pressure of carbon dioxide) data collected using an equilibrator-infrared method (SUPER CO2 system from Sunburst Sensors). Ancillary data for calculation of air-sea CO2 fluxes include temperature, salinity, atmospheric CO2.more » « less
An official website of the United States government
